Frakcje pyłu – pomiary metodą IPS (Infrared Particle Sizer)

    Infrared Particle Sizer logoPomiar ilości i wielkości cząstek w podczerwieni  polega na pomiarze w świetle przechodzącym, na płaszczyźnie, w wiązce światła równoległego. Typowy pomiar jednowymiarowy (1D) umożliwia uzyskanie informacji o maksymalnym wymiarze cząstki  i oparty jest na zasadzie zilustrowanej na poniższym rysunku.

    pomiary emisji pyłu opis metody

    Przestrzeń pomiarowa sondy IPS jest ukształtowana przez układ optyczny A, B do której z nadajnika emitowane jest światło w zakresie podczerwieni. Przestrzeń pomiarowa  może być kształtowana dowolnie, stąd mamy nieograniczony zakres pomiarowy i jest równomiernie oświetlona na całej swojej powierzchni.

    Analizowane cząstki poruszające się w ośrodku powietrza lub cieczy, wlatując w obszar przestrzeni pomiarowej powodują na skutek zjawiska rozproszenia osłabienie strumienia świetlnego odbieranego przez fotodiodę. Miarą wielkości tego osłabienia jest po przetworzeniu amplituda sygnału elektrycznego uformowanego przez układ elektroniczny. Amplituda impulsu odpowiada maksymalnemu wymiarowi cząstki. Po kalibracji sitowej zgodnej z metodą Elsieve, zbiór cząstek może być przestawiony zgodnie z tradycyjną metodą pomiaru na sitach mechanicznych.

    Podstawowy pomiar wielkości cząstek realizowany jest przy pomocy techniki cyfrowej używając przetwornika A/C IPS USB o częstotliwości 500 kHz i rozdzielczości 12 bit. Każde ziarno jest skanowane w czasie przelotu przez przestrzeń pomiarową kilkanaście razy. Przy takiej częstotliwości przetwornika można z dokładnością do 1% określić amplitudę impulsu, co jest równoznaczne z dokładnością pomiaru wielkości (maksymalnego wymiaru) cząstki.

    W metodzie KAMIKA mierzone są wszystkie cząstki z próbki. Dzięki temu wyniki pomiaru są rzeczywiste i uwzględniają każdą, nawet największą cząstkę w rozkładzie. Pomiar jest szybki, cyfrowy - mierzona jest cząstka po cząstce.

    Każdy przyrząd jest kalibrowany przy pomocy wzorców cząstek sferycznych Duke Standards według standardów i atestów firmy Thermo Fisher Scientific Inc., USA (więcej o kalibracji IPS)

    Pomiary  „on line” pyłu PM10 PM2,5 i innych frakcji w spalinach lub w powietrzu

    PM2,5 analizatorAnalizator IPS KF

     Analizator IPS w wersji KF jest urządzeniem online służącym do pomiaru w spalinach pyłu PM10 PM2,5 i innych, niezależnie od jego właściwości fizycznych i chemicznych. Składa się z elementu przewodu kominowego w postaci zwężki z głowicą pomiarową i elektronicznym blokiem pomiarowym sterownym przez komputer. Analizator jest opracowany zgodnie z normą EN13284 z zamianą filtracji wewnętrznej na zewnętrzną.

    PODSTAWOWE PRZEZNACZENIE: W związku z potrzebą badania emisji z małych kotłów domowych o mocy do kilkudziesięciu kW opracowano wersję pyłomierza IPS KF, która może mierzyć  cząstki w sposób optyczny od 0,4 do 300 µm, poruszające się z prędkością od poniżej 1 do 7 m/s. Metoda optyczna umożliwia pomiar z rozdzielczością 12 bit. Analizator jest wyposażony w dodatkowe gniazdo filtra Φ 50 do równoległych pomiarów grawimetrycznych.

    pomiary emisji

    Analizator IPS K (pyłomierz)

    Pyłomierz przeznaczony jest do pomiaru online zanieczyszczenia powietrza lub spalin przepływających przez komin lub kanał. Pomiar analizatorem jest izokinetyczny, można przeprowadzić go jednorazowo dla zaprogramowanej objętości powietrza lub powtarzać automatycznie w sposób ciągły. Monitoring nie jest ograniczony czasowo. Wynikiem pomiaru jest granulacja od 0,4 do 300 µm z podziałem na 256 równych klas, koncentracja liczbowa i wagowa w m3 dla dowolnie wybranych wartości pyłu, np. PM10 PM5 PM2,5 i innych. Przyrząd w automatyczny sposób mierzy zgodnie z normami PN-Z-04030-7 i EN 13284-A1. Można w nim zamontować filtr Φ50 do pomiaru równoległego z pomiarem optycznym.

    Sposób pomiaru analizatora IPS jest złożony i polega na pomiarze najmniejszych cząstek z uwzględnieniem wpływu dyfrakcji laserowej, by dla większych cząstek przejść stopniowo, w sposób ciągły, do pomiaru zmian strumienia promieniowania rozpraszanego przez poruszające się cząstki. W ten sposób uniknięto pewnych wad "dyfrakcji laserowej" stosowanej w pełnym zakresie pomiarowym, gdzie pojedyncze, największe cząstki dają słabe zmiany obrazu dyfrakcyjnego.  W analizatorach IPS nie ma ograniczeń optycznych dla pomiaru pojedynczych małych i dużych cząstek.  Strumień promieniowania w podczerwieni nie tylko identyfikuje wielkość cząstek, ale pozwala również je precyzyjnie zliczyć je w całym zakresie pomiarowym. 

    Każdej cząstce odpowiada impuls elektryczny proporcjonalny do wielkości cząstki. Zbiór cząstek jest pierwotnie mierzony z podziałem na 4096 klas wymiarowych i przekształcany (kalibrowany) na 256 klas wymiarowych dostępnych dla użytkownika.

    PM10

    Analizator IPS GA

    Analizator IPS w wersji GA jest urządzeniem online służącym do pomiaru pyłu PM 10 PM 2,5 i innych frakcji w spalinach. Składa się on z dyfuzora z głowicą pomiarową i elektronicznym blokiem pomiarowym sterowanym przez komputer. Analizator jest opracowany zgodnie z normą EN13284 z zamianą filtracji wewnętrznej na zewnętrzną.

    PODSTAWOWE PRZEZNACZENIE:  Genezą produkcji pyłomierza IPS GA była potrzeba badania emisji z małych silników turbinowych. Analizator może mierzyć  cząstki w sposób optyczny od 0,5 do 300 µm, poruszające się z prędkością od 1 do 27 m/s. Analizator jest wyposażony w gniazdo filtra Φ 50 do równoległych pomiarów grawimetrycznych.

    Analizatory laboratoryjne

    pomiar PM2.5

    Analizator 2DiSA

    Sposób pomiaru analizatora IPS jest złożony i polega na pomiarze najmniejszych cząstek z uwzględnieniem wpływu dyfrakcji laserowej, by dla większych cząstek przejść stopniowo, w sposób ciągły, do pomiaru zmian strumienia promieniowania rozpraszanego przez poruszające się cząstki. W analizatorach IPS nie ma ograniczeń optycznych dla pomiaru pojedynczych małych i dużych cząstek. Strumień promieniowania w podczerwieni nie tylko identyfikuje wielkość cząstek, ale również pozwala je precyzyjnie zliczyć w całym zakresie pomiarowym.

    Do rozdzielania cząstek w procesie dozowania analizatora IPS U stosuje się dozownik ultradźwiękowy w postaci wklęsłego naczynia, w którym dno drga z częstością około  40 kHz i z amplitudą dochodzącą do kilku µm. Zawilgocona substancja podczas wibracji wysusza się, tak, że nawet duża zawartość wilgoci w próbce nie przeszkadza w pomiarach. Dla dozowania możliwie różnorodnych proszków sterowanie amplitudą i ilością impulsów ultradźwiękowych ma około 4000 stanów przejściowych pomiędzy zerem a maksymalnym wzbudzeniem dozownika, co daje 16 000 000 stopni do regulacji dozownika.

     Dla precyzyjnego dozowania niezbędne jest także sterowanie przepływającym powietrzem, które unosi rozdzielone wcześniej cząstki i transportuje je do strefy pomiaru. Sterowanie przepływem powietrza ma około 300 poziomów prędkości. Tak precyzyjny sposób sterowania dozownikiem pozwala szybko (do kilkunastu tysięcy cząstek na sekundę) mierzyć pojedyncze cząstki i uniknąć nakładania się cząstek w strefie pomiaru.

     Bardzo użyteczne jest różnorodne oprogramowanie analizatora IPS. Oprócz programu pomiarowego oferowany jest program optymalizacji dowolnego parametru w funkcji granulacji badanego proszku i program przeliczający granulacje w dowolnej kalibracji np. sitowej, aerometrycznej czy sferycznej. Wyniki pomiarów przedstawione są na kolorowych wykresach i w postaci przejrzystych tabel.

    Zakres pomiarowy: 0,5 - 2000 µm. Ilość klas pomiarowych: 256.

    pomiary emisji pyłu

    Analizator AWK 3D

    Przyrząd składa się z dwóch skrzyżowanych pod kątem prostym optycznych przyrządów pomiarowych, które jednocześnie mierzą przelatującą przez przestrzeń pomiarową cząstkę. Taki przyrząd można było zbudować dzięki innowacyjnej technologii pomiarowej i cyfrowemu przetwarzaniu wyników pomiarów optycznych oferowanych przez firmę KAMIKA. Strumień promieniowania podczerwonego lub laserowego w optycznym przyrządzie pomiarowym jest rozpraszany przez przelatujące ziarna. Po pomiarze zbiór ziaren jest kalibrowany (przeliczany) na 256 klas wymiarowych. Analizator AWK 3D jest wyposażony w elektroniczny blok pomiarowy, do którego podłączone są dwa niezależne tory pomiarowe wielkości cząstek, łącznie z licznikiem pomiarów, co daje możliwość określania kształtu cząstek w trzech wymiarach.

    Zakres pomiarowy: od 0,2 do 31,5 mm.

    PRZEZNACZENIE:

    • do pomiaru w warunkach laboratoryjnych uziarnienia materiałów sypkich np. surowców mineralnych (drobnych kruszyw, żwiru, grubych piasków) węgla, nasion roślin oraz granulatów spożywczych i tworzyw sztucznych) od 0,2 do 31,5 mm,
    • do pełnej symulacji pomiarów według sit mechanicznych,
    • do optymalizacji procesu mielenia czy doboru mieszanek,
    • do określania kształtu ziaren.

    Pomiary imisji: „on line” wymiary i koncentracja cząstek w powietrzu atmosferycznym

    pomiary imisji pyłu PM10

    Analizator IPS P

    Bezobsługowy i zdalnie pracujący w sieci analizator do pomiaru online wymiarów i koncentracji cząstek zawieszonych w powietrzu wraz ze wskazaniem kierunku wiatru w trakcie pomiaru. Pomiar izokinetyczny granulacji i koncentracji pyłu o średnicy ziaren od 0,4 do 300 µm z podziałem na 256 równych klas lub dla dowolnie wybranych wartości pyłu zawieszonego, np. PM10 PM5 PM2,5. Poza pomiarem granulacji i koncentracji pyłu, mierzona jest temperatura, wilgotność powietrza oraz prędkość i kierunek wiatru.

    Sposób pomiaru analizatora IPS jest złożony i polega na pomiarze najmniejszych cząstek z uwzględnieniem wpływu dyfrakcji laserowej, by dla większych cząstek przejść stopniowo, w sposób ciągły, do pomiaru zmian strumienia promieniowania rozpraszanego przez poruszające się cząstki. W analizatorach IPS nie ma ograniczeń optycznych dla pomiaru pojedynczych małych i dużych cząstek. Zbiór cząstek jest pierwotnie mierzony z podziałem na 4096 klas wymiarowych i przekształcany (kalibrowany) na 256 klas wymiarowych dostępnych dla użytkownika.

    Szczegółowe informacje o ww. analizatorach dostępne są na stronie producenta: www.kamika.pl 

    Aktualności
    • 06
      listopad
      Strona pt. Zmiana systemu opłat została uzupełniona o komentarz do przygotowania raportu KOBiZE za rok 2019, który będzie stanowił podstawę naliczenia opłaty za korzystanie ze środowiska w roku 2019 w zakresie emisji substancji do powietrza (zmiana wprowadzona ustawą z dnia 4 lipca 2019 r. o zmianie ustawy o systemie handlu uprawnieniami do emisji gazów cieplarnianych oraz niektórych innych ustaw Dz. U. poz. 1501). Rekomendacja obejmuje zapewnienie spójności pomiędzy sprawozdaniem opłatowym i KOBiZE w sposób umożliwiający uniknięcie potrzeby weryfikacji opłaty. Oprócz dwóch metod (podziału emisji i wskaźników zastępczych) wskazano różnice w klasyfikacji związków według stawek opłat i KOBiZE.
    • 06
      listopad
      W bieżącym kroku aktualizacji treści portalu uzupełniliśmy  następujące strony: - OPŁATY: zmiany stawek opłat - PRAWO: opłaty za wprowadzanie gazów i pyłów do powietrza - FRAKCJE PYŁU: Wskaźniki średniego narażenia na pył PM2,5 w miastach Polski
    • 20
      październik
      Zapraszamy na 16. edycję Konferencji Termiczne przekształcanie odpadów, która odbędzie się w dniach 26 - 28 listopada 2019 r. w Katowicach. Wydarzenie będzie dedykowane nowym perspektywom dla lokalnych instalacji WtE w Polsce (Waste to Energy), w tym możliwościom współspalania odpadów w krajowej, lokalnej energetyce. Pośród pozostałych tematów do najważniejszych należą: - uwarunkowania budowy i funkcjonowania instalacji - miejsce procesu termicznego przekształcania odpadów w gospodarce o obiegu zamkniętym - możliwość finansowania instalacji „Waste to Energy” ze środków krajowych - sytuacja obecnych i przyszłych instalacji w świetle ostatniej nowelizacji ustawy o utrzymaniu czystości i porządku w gminach - kogeneracja.
    NEWSLETTER:
    Jeśli chcesz otrzymywać powiadomienia o nowych artykułach zapisz się
     
    Operat FB
    szkolenia rozprzestrzenianie się zanieczyszczeń
    Szkolenia Bilans LZO
    Szkolenia Obliczenia emisji

    Zobacz komunikaty JRC / US EPA / EEA / NIK / GDOŚ / GIOŚ / IOŚ / MŚ:

    EPA Moves Forward on Suite of Actions to Address Ethylene Oxide (06.11.2019)

    EPA Participates in Oil and Natural Gas Stakeholder Roundtable with States, Tribes, Operators and Environmental Groups to Improve Communication and Ensure Safe and Responsible Domestic Oil and Gas Development (06.11.2019)

    EPA awards $300,000 to small business in Texas to commercialize environmental technologies (04.11.2019)

    EPA Seeks Input on Proposals to Establish a Clear and Stable Regulatory Framework for Coal Combustion Residuals and Reduce More Pollutants Under Effluent Limitation Guidelines (04.11.2019)

    EEA: Emissions and supply of fluorinated greenhouse gases in Europe (31.10.2019)

    f-gazy
    © EEA

    EEA: The EU Emissions Trading System in 2019 - trends and projections (31.10.2019)

    CO2 ETS
    © EEA

    EEA: Quality and greenhouse gas intensities of transport fuels in the EU in 2017 - EEA Report No 5/2019 (31.10.2019)

    emisje CO2 paliwa
    © EEA

    EEA: Large combustion plants operating in Europe (30.10.2019)

    LCP Europa emisje
    © EEA

    EEA: Emission Factor Database (17.10.2019)

    EEA: EMEP/EEA air pollutant emission inventory guidebook 2019 (17.10.2019)

    U.S. EPA settles with supermarket chain Vons over chemical safety violations (16.10.2019)

    EEA: The European Pollutant Release and Transfer Register E-PRTR, Member States reporting under Article 7 of Regulation No 166/2006 (16.10.2019)

    EEA: Air quality in Europe — 2019 report (16.10.2019)

    Jakość powietrza w Polsce i w Europie
    © EEA

    EEA: Cutting air pollution in Europe would prevent early deaths, improve productivity and curb climate change (16.10.2019)

    U.S. EPA requires Starkist Samoa to improve chemical safety (10.10.2019)

    EPA: Lane Regional Air Protection Agency awarded EPA grant for nearly $5 million to improve air quality in Oakridge - Five-year investment expected to net long-term benefits for area residents (09.10.2019)

    EEA: SmartWay  - Leading Carriers (08.10.2019)

    EPA: Two Eastern Massachusetts Companies Earn EPA Distinction for Freight Shipping Efficiency (08.10.2019)

    U.S. EPA reaches settlements to study and mitigate indoor air and groundwater contamination in Sunnyvale, California (07.10.2019)

    Zobacz bieżące artykuły w Atmospheric Environment:

    Estimating emissions from tourism activities

    Intermediate and high ethanol blends reduce secondary organic aerosol formation from gasoline direct injection vehicles

    Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers

    Medical air in healthcare institutions: A chemical and biological study

    Zobacz EUR-Lex:

    ETS – Opinia Europejskiego Komitetu Ekonomiczno-Społecznego „Wniosek dotyczący rozporządzenia Parlamentu Europejskiego i Rady zmieniającego rozporządzenie 2015/757 w celu właściwego uwzględnienia globalnego systemu gromadzenia danych na temat zużycia paliwa olejowego przez statki” (16.07.2019)

    Opinia Europejskiego Komitetu Ekonomiczno-Społecznego – Praca z azbestem w ramach termomodernizacji (16.07.2019)

    Dyrektywa Parlamentu Europejskiego i Rady 2019/1161 z dnia 20 czerwca 2019 r. zmieniająca dyrektywę 2009/33/WE w sprawie promowania ekologicznie czystych i energooszczędnych pojazdów transportu drogowego (12.07.2019)

    Wyrok Trybunału Sprawiedliwości z dnia 8 maja 2019 r. (wniosek o wydanie orzeczenia w trybie prejudycjalnym) – Kwalifikacja spalarni odpadów jako strategicznych obiektów infrastruktury i instalacji o istotnym znaczeniu krajowym z poszanowaniem procedury oceny wpływu na środowisko (08.07.2019)

    Decyzja wykonawcza Komisji 2019/1119 z dnia 28 czerwca 2019 r. w sprawie zatwierdzenia energooszczędnego oświetlenia zewnętrznego pojazdów wykorzystującego diody elektroluminescencyjne do stosowania w pojazdach wyposażonych w silnik spalinowy wewnętrznego spalania i zelektryfikowanych pojazdach hybrydowych bez doładowania zewnętrznego, jako technologii innowacyjnej umożliwiającej zmniejszenie emisji CO2 pochodzących z samochodów osobowych (01.07.2019)

    Rozporządzenie Parlamentu Europejskiego i Rady  2019/1021 z dnia 20 czerwca 2019 r. dotyczące trwałych zanieczyszczeń organicznych (25.06.2019)

    Rozporządzenie delegowane Komisji 2019/986 z dnia 7 marca 2019 r. zmieniające załączniki I i II do rozporządzenia Parlamentu Europejskiego i Rady nr 510/2011 w odniesieniu do monitorowania emisji CO2 z nowych lekkich samochodów dostawczych, którym udzielono homologacji typu w wyniku procesu wielostopniowej homologacji typu (18.06.2019)

    Rozporządzenie wykonawcze Komisji 2019/987 z dnia 29 maja 2019 r. zmieniające rozporządzenie wykonawcze nr 293/2012 w odniesieniu do monitorowania emisji CO2 z nowych lekkich samochodów dostawczych, którym udzielono homologacji typu w wyniku procesu wielostopniowej homologacji typu (18.06.2019)

    Sprawozdanie specjalne nr 8/2019 – „Energia wiatrowa i słoneczna w produkcji energii elektrycznej – do osiągnięcia celów unijnych potrzebne są istotne działania” (07.06.2019)